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Abstract

The contact of rough spheres is of high interest in many
tribological, thermal, and electrical fundamental analyses.
Implementing the existing models is complex and requires
iterative numerical solutions. In this paper a new model is
presented and a general pressure distribution is proposed
that encompasses the entire range of spherical rough con-
tacts including the Hertzian limit. It is shown that the
non-dimensional maximum contact pressure is the key pa-
rameter that controls the solution. Compact expressions are
proposed for calculating the pressure distribution, radius of
the contact area, elastic bulk deformation, and the compli-
ance as functions of the governing non-dimensional parame-
ters. The present model shows the same trends as those of
the Greenwood and Tripp model. Correlations proposed for
the contact radius and the compliance are compared with
experimental data collected by others and good agreement
is observed.

NOMENCLATURE
A = area, m2

a = radius of contact, m
a0L = relative contact radius, ≡ aL/aH
dv = Vickers indentation diagonal, m
E = Young’s modulus, Pa
E0 = equivalent elastic modulus, Pa
F = external force, N
H = hardness, Pa
Hmic = microhardness, Pa
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m = mean absolute asperity slope
ns = number of microcontacts
P = pressure, Pa
P 00 = relative max pressure, ≡ P0/P0,H
r = radial position, m
Y = separation between mean planes, m

Greek
α = roughness parameter, ≡ σρ/a2H
β = radius of summits, m
γ = exponent of general pressure distribution
η = summits density, m−2

κ = compliance, m
λ = non-dimensional separation, ≡ Y/√2σ
µ = non-dimensional parameter, ≡ 8ση√2ρβ/3
ν = Poisson’s ratio
ξ = non-dimensional radial position, ≡ r/aL
ρ = radius of curvature, m
σ = RMS surface roughness, µm
τ = non-dimensional parameter, ≡ ρ/aH
ω = deformation, m

Subscripts
0 = value at origin
1 = surface 1
2 = surface 2
a = apparent, asperity
b = bulk
H = Hertz
L = large
r = real
s = small, summit
v = Vickers
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INTRODUCTION

Hertzian theory of contact between elastic bodies is
based on the assumption that the contacting surfaces are
ideally smooth and thus perfect contact takes place through-
out the nominal contact area. However, real surfaces have
roughness and contact occurs only at discrete spots called
microcontacts, where asperities make contact. The real con-
tact area is usually a small fraction of nominal contact area.
Therefore, Hertzian contact is a limiting case where sur-
faces are considered ideally smooth. Spherical rough con-
tact analysis includes two problems at different scales, i)
the bulk or macroscale compression and ii) deformation of
asperities.

The contact area is the area where the microcontacts
are distributed; also the contact pressure falls off to a negli-
gible value (zero in the Hertz limit) at the edge of the con-
tact area. Hertz replaced the contacting spherical surfaces
with paraboloids; thus the contact between two spheres was
simplified to the contact of a plane and a sphere that has
an effective radius ρ, where 1/ρ = 1/ρ1 + 1/ρ2. For conve-
nience, all elastic deformations can be considered to occur
in one body, which has an effective elastic modulus E0, and
the other body is assumed to be rigid. The effective elastic
modulus can be found from

1

E0
=
1− υ21
E1

+
1− υ22
E2

(1)

Hertz also assumed a contact pressure distribution in the
form of

PH (r/aH) = P0,H

q
1− (r/aH)2 (2)

where P0,H = 1.5F/
¡
πa2H

¢
and aH = (0.75Fρ/E0)1/3 are

the maximum pressure and the radius of the Hertzian con-
tact area, respectively.

A common methodology to model the roughness is
the representation of the asperities by simple geometrical
shapes with a probability distribution for the different as-
perity parameters involved. If the asperities of a surface
are isotropic and randomly distributed, the surface is called
Gaussian. Williamson et al. [1] have shown experimen-
tally that many of the techniques used to produce engineer-
ing surfaces give a Gaussian distribution of surface heights.
The contact between Gaussian rough surfaces is modeled
by the contact between a single Gaussian surface that has
the effective surface characteristics with a perfectly smooth
surface. The equivalent roughness σ and asperity slope m
can be found from σ =

p
σ21 + σ22 and m =

p
m2
1 +m

2
2,

respectively.
Different approaches can be taken to analyze the de-

formation of asperities by assuming plastic [2], elastic [3],
or elastoplastic [4, 5] regimes at microcontacts. It was ob-
served through experiments that the real contact area is

proportional to the load [6, 7]. However, if elastic deforma-
tion is assumed, using Hertzian theory, the real contact area
will not be linearly proportional to the load, Ar ∝ F 2/3. Ar-
chard [8] solved this problem by assuming that the surface
asperities have micro-asperities and micro-asperities have
micro-micro asperities and so on, by adding several levels
of asperities, it can be shown that Ar ∝ F . Greenwood
and Williamson (GW) [3] subsequently developed an elastic
contact model that has been widely accepted, they proposed
that as the load increases new microcontacts are nucleated
while the mean size of microcontacts remains constant. The
main assumptions of the GW model are i) asperity heights
have a Gaussian distribution; the distribution of summit
heights is the same as the surface heights standard devi-
ation, i.e., σs = σ, ii) asperity summits have a spherical
shape all with a constant radius β, and iii) asperities en-
tirely deform elastically, i.e., Hertzian theory can be applied
for each individual summit. According to the GW model,
the summits or “peaks” on a surface profile are the points
higher than their immediate neighbors at the sampling in-
terval used. Recently Greenwood and Wu [9] reviewed the
assumptions of the GWmodel and concluded that “the GW
definition of peaks is wrong and gives a false idea of both
number and the radius of curvature of asperities”. Green-
wood and Wu proposed to return to the Archard idea that
roughness consists of roughness on roughness and that the
contact may be plastic at light loads but it becomes elastic
at heavier loads.

Considering an indentation hardness for asperities,
Persson [10] concluded, as GW did, that except for pol-
ished surfaces all microcontacts deform plastically. Later,
it will be shown that the deformation mode of asperities has
a second order effect on spherical rough contacts and both
elastic and plastic models give similar results.

LITERATURE REVIEW

The open literature contains very few analytical mod-
els for the contact of spherical rough surfaces. The first in-
depth analytical study to investigate the effect of roughness
on elastic spherical bodies was performed by Greenwood
and Tripp (GT) [11]. The GT model was developed based
on the same assumptions as the GW model for microcon-
tacts. Moreover, the bulk deformation was assumed to be
elastic. The elastic deformation produced by an arbitrary
pressure distribution over a circular area on a half-space can
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be found from [11, 12]

ωb (r) =



2

E0

Z a

0

P (s) ds r = 0

4

πE0r

Z r

0

sP (s)K
³s
r

´
ds r > s

4

πE0

Z ∞
r

P (s)K
³r
s

´
ds r < s

(3)

where K (·) is the complete elliptic integral of the first kind
and a is the radius of the circle. Greenwood and Tripp
[11] reported a complete set of relationships and solved it
numerically. The results of the GT analysis were found
to be primarily a function of a non-dimensional parameter
T = 2F/σE0

√
2ρσ and a weak function of µ = 8ση

√
2ρβ/3.

The most important trends in the GT model were that an
increase in roughness resulted in a decrease in the pressure
and an increase in the contact area. The GT model was a
significant achievement, however its limitations are,

• the GT model was presented as a set of relationships;
applying the model is complex and requires numerically
intensive solutions

• two of its input parameters, i.e., summits radius β and
density η cannot be measured directly and must be es-
timated through statistical calculations. Additionally,
these parameters are sensitive to the surface measure-
ments [7, 9].

Roca and Mikic [13] developed an alternative numerical
model by assuming plastic deformation of asperities and
that the height of the surface roughness has a Gaussian
distribution. Similar trends to those of the GT model were
presented. The modeling results of [13] was also mainly a
function of a non-dimensional parameter σ = πσE0/aHP0,H
and a weak function ofH/P0,H , where P0,H is the maximum
pressure in the Hertzian limit. Mikic and Roca did not
report general relations to calculate the contact parameters.

Greenwood et al. [14] introduced a non-dimensional
parameter α called roughness parameter that governs pri-
marily the rough spherical contact as

α =
σρ

a2H
= σ

µ
16ρE02

9F 2

¶1/3
(4)

Greenwood et al. [14] showed that the controlling non-
dimensional parameters in both [11] and [13] models can
be written in terms of α, i.e., T = 4

√
2/3
√
α3 and σ =

3π2α/4, respectively. They concluded that it is unimpor-
tant whether the asperities deform elastically or plastically;
the contact pressure is predominantly governed by α. Fur-
ther, if the value of α is less than 0.05, the effect of roughness
is negligible and the Hertzian theory can be used.

MODEL DEVELOPMENT

In this study, the deformation of asperities is assumed
to be plastic. As a result, bringing two rough surfaces to-
gether within a distance Y is equivalent to removing the top
of the asperities at a height Y above the mean plane. The
assumption of pure plastic microcontacts enables the micro
mechanics to be specified completely by surfaces roughness
σ (rather than the summit heights as in the GT model) and
the mean asperity slope m without having to assume some
deterministic peak shapes as with elastic models. Cooper
et al. [2] modeled surface roughness as hemispherical asper-
ities whose heights and slopes have Gaussian distributions
σ and m, respectively. The following summarizes the rela-
tionships for the contact of conforming rough surfaces [15]:

as =

r
8

π

³ σ
m

´
exp

¡
λ2
¢
erfc λ

ns =
1

16

³m
σ

´2 exp ¡−2λ2¢
erfc λ

Aa

Ar
Aa

=
1

2
erfc λ

(5)

where λ = Y/
√
2σ and erfc(·) is the complementary error

function.
Microhardness is not constant throughout the material

and in most surfaces is greater than the bulk hardness [10,
15]. It decreases with increasing depth of the indenter until
the bulk hardness is obtained. Hegazy [16] proposed empiri-
cal correlations to account for the decrease in microhardness
with increasing penetration depth in the form of

Hv = c1 (d
0
v)
c
2 (6)

where Hv is the Vickers microhardness, d0v = dv/d0 and
d0 = 1 µm.

In the present model, the bulk deformation is assumed
to be elastic. Due to the surface curvature, the separation
and consequently the mean size and the number of the mi-
crocontacts vary with radial position. The contact area is
divided into infinitesimal surface elements, dr, where the
conforming rough relationships, Eq. (5) can be applied. In
the vicinity of the contact the profile of the sphere can be
approximated by a paraboloid, u (r) = u0−r2/2ρ. The local
separation Y (r) is the distance between two mean planes
of the contacting surfaces, Fig. 1, and can be written as

Y (r) = ωb (r)− u (r) = ωb (r)− u0 + r2/2ρ (7)

A schematic free-body diagram of the contact is shown in
Fig. 2. As previously mentioned, all the bulk deformations
are assumed to occur in the elastic half space which has
an effective elasticity modulus E0. Discrete point forces
are created at the microcontacts where the pressure is the
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Figure 1. CONTACT BETWEEN SPHERE AND ROUGH PLANE
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Figure 2. FREE-BODY DIAGRAM OF CONTACT, DISCRETE POINT

FORCES AND PLASTIC LAYER

microhardness of the softer material in contact. The surface
roughness acts like a plastic zone on an elastic half-space, in
the sense that the effect of these point forces on the elastic
half-space is considered as a continuous pressure P (r). In
a surface element dr, Fig. 1, the local separation Y (r) is
uniform. Therefore, the ratio of the real to apparent area
can be found from Eq. (5)

dAr (r)

dAa (r)
=
1

2
erfc λ (r) (8)

The local microhardness is determined from the Vickers mi-
crohardness correlation, Eq. (6) as a function of the local
mean microcontact radius as (r). The relation between the

Vickers diagonal dv and the microcontact radius as, based
on equal areas, is dv =

√
2πas. Therefore, the local micro-

hardness is Hmic (r) = c1
£√
2π as (r)

¤c
2 . The local radius

as (r) and the number of the microcontacts ns (r) can be
found from Eq. (5).

The external load F is the summation of the point forces
acting at the microcontacts

F =
X
i

fi =
ZZ

contact area

Hmic (r) dAr (r) (9)

Combining Eqs. (8) and (9) and considering a circular con-
tact area, one obtains

F = π

Z ∞
0

Hmic (r) erfc λ (r) rdr (10)

The upper limit of the integral is set to infinity, since the
contact radius, aL, is not known at this stage. But, it will
not effect the final solution because the effective pressure
distribution rapidly approaches zero at the edge of the con-
tact area. On the bulk side, the contact pressure must also
satisfy the force balance, thus, the pressure distribution can
be found from

P (r) =
1

2
Hmic (r) erfc λ (r) (11)

The elastic displacement of the half-space can be found by
substituting the pressure distribution Eq. (11) into Eq. (3).
Equations (3), (5), (8), (10), and (11) form a closed set
of governing relationships. An algorithm and a computer
program were developed to solve the set numerically [17].

Figure 3 shows the effect of roughness on the contact
pressure predicted by the model. The program was run for
a wide range of roughness (and accordingly asperity slope)
while other input parameters shown in Fig. 3 were kept
constant. As shown, the contact pressure approaches the
Hertzian pressure as the roughness approaches zero. Unlike
the Hertzian contact, pressure distributions asymptotically
approach zero. As a result, the contact radius is not an
exact point and its definition is rather arbitrary. However,
in this study, it is considered as the radius where the nor-
malized pressure is negligible, i.e., P (r = aL) /P0 < 0.01.

GENERAL PRESSURE DISTRIBUTION

The main goal of this study is to develop compact re-
lations for determining compliance, contact pressure, and
the contact radius as functions of non-dimensional parame-
ters that describe the contact problem. To reach this goal,
the following simplifications are made: i) an effective micro-
hardness Hmic is considered which is constant throughout
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Figure 3. EFFECT OF ROUGHNESS ON PRESSURE DISTRIBUTION

the contact region and ii) the slope m is assumed to be a
function of roughness σ.

Figure 4 illustrates several non-dimensional pressure
distributions predicted by the model for some values of
P 00 = P0/P0,H versus the non-dimensional radial location
ξ = r/aL. It was observed that the non-dimensional pres-
sure distribution can be specified as a function of P 00 and
ξ. In other words, a general profile exists that covers all
spherical rough contact pressures. The profile of the pres-
sure distribution, especially in the contacts where P 00 is less
than 0.6, is very similar to a normal (Gaussian) distribution.
However, as P 00 approaches unity (the Hertzian contact) the
pressure distribution profile begins to deviate from the nor-
mal profile. The general pressure distribution for spherical
rough contacts was found to be

P (ξ) = P0
¡
1− ξ2

¢γ
(12)

where γ is calculated through a force balance to be

γ = 1.5
P0
P0,H

µ
aL
aH

¶2
− 1 (13)

For the general pressure distribution, the relation between
the maximum pressure P0 and the applied force F is

P0 = (1 + γ)
F

πa2L
(14)

In the limit where roughness approaches zero, P 00 and a0L
both approach unity, γ = 0.5, and Eqs. (12) and (14) yield
the Hertzian pressure distribution, i.e., Eq. (2). With the

ξ = r / aL

P(
ξ)

/P
0
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' = 0.952
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' = 0.815
P0

' = 0.700
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' = 0.257
P0

' = 0.014

Figure 4. NON-DIMENSIONAL PRESSURE DISTRIBUTIONS FOR

SPHERICAL ROUGH CONTACTS

Table 1. PHYSICAL INPUT PARAMETERS AND THEIR DIMENSIONS

FOR SPHERICAL ROUGH CONTACTS

Parameter Dimension

Effective elastic modulus, E0 ML−1T−2

Force, F MLT−2

Microhardness, Hmic ML−1T−2

Radius of curvature, ρ L

Roughness, σ L

Max. contact pressure, P0 ML−1T−2

general pressure distribution profile, i.e., Eq. (12), the prob-
lem is reduced to finding relationships for P0 and aL. Fur-
ther, the radius of the contact area, based on its definition,
can be found if P0 and the pressure distribution are known,
therefore the key parameter is the maximum contact pres-
sure P0.

Dimensional analysis using the Buckingham Π theorem
has been applied to many physical phenomena such as fluid
flow, heat transfer and stress and strain problems. The
Buckingham Π theorem proves that in a physical problem
including n quantities in which there are m dimensions the
quantities can be arranged into n−m independent dimen-
sionless parameters [18]. Table 1 summarizes the indepen-
dent input parameters and their dimensions for spherical
rough contacts. Hmic is an effective value for the micro-
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IMUM CONTACT PRESSURE

hardness of the softer material in contact. The slope of as-
perities m may be estimated using an empirical relationship
suggested by Lambert and Fletcher [19], m = 0.076 σ0.52,
where σ is the surface RMS roughness in micron. Therefore,
the surface slope m is not considered as an independent in-
put parameter. All quantities in Table 1 are known to be
essential to the maximum contact pressure and hence some
functional relation must exist in the form of

P0 = P0 (ρ,σ, E
0, F,Hmic) (15)

Applying the Buckingham Π theorem there will be three Π
groups; so the maximum pressure can be more compactly
stated as a function of these three non-dimensional parame-
ters. Following Greenwood et al. [14], we chose the rough-
ness parameter α. The other non-dimensional parameters
are E0/Hmic and τ defined as

τ =
ρ

aH
=

µ
4E0ρ2

3F

¶1/3
(16)

The present model described in the previous section was
run for a wide range of input parameters to construct Figs.
5 - 7. As shown in Fig. 5, the effect of E0/Hmic on the
maximum contact pressure is small and therefore ignored.
Figures 6 and 7 show P 00 and a0L as functions of α and

τ over a wide range, respectively. As shown, P 00 and a0L
are governed predominantly by the roughness parameter α
and the other parameter τ has a minor role. As expected,
as α decreases both P 00 and a0L approach unity, i.e., the
Hertzian contact. The non-dimensional maximum contact
pressure P 00 and the contact radius a

0
L were curve fitted and

α

P
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/P
0,

H
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τ = 84.5
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τ = 1149
τ = 5333
τ = 67467

τ = 67467
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σ → 0 µm

Figure 6. NON-DIMENSIONAL MAXIMUM CONTACT PRESSURE
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Figure 7. NON-DIMENSIONAL CONTACT RADIUS

the following expressions were found:

P 00 =
1

1 + 1.37α/τ0.075
(17)

a0L =

(
1.605/

p
P 00 0.01 ≤ P 00 ≤ 0.47

3.51− 2.51P 00 0.47 ≤ P 00 ≤ 1
(18)

The maximum difference between Eqs. (17) and (18) and
the full model is estimated to be less than 4.5 percent in
the range of 0.01 ≤ P 00 ≤ 1. Another relationship for the
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WOOD AND TRIPP MODEL

radius of the contact area was derived in the form of a0L =
1.80
√
α+ 0.31τ0.056/τ0.028.

The maximum contact pressure P0 from Eq. (17), is
compared with the GT model in Fig. 8 over a range of α,
for two values of µ which bracket a wide range of contacts
[14]. As shown, both models demonstrate the same trend
over the comparison range; the two values of τ were chosen
to best fit the GT curves shown, they also cover a wide
range of contacts.

COMPLIANCE

The elastic deformation of the half-space can be calcu-
lated by substituting the general pressure distribution Eq.
(12) into Eq. (3), where the radius of the contact area is
aL:

ω0b (ξ) =



π

4
B (0.5, γ + 1) ξ = 0

Z ξ

0

s
¡
1− s2¢γ K µs

ξ

¶
ds s < ξ

Z 1

ξ

¡
1− s2¢γ K µξ

s

¶
ds s > ξ

(19)

where B (x, y) and ω0b = πE0ωb/ (4P0 aL) are the beta
function and the non-dimensional bulk deformation, respec-
tively. A general analytic solution for the integrals in Eq.
(19) does not exist and they must be solved numerically for
different values of γ. Since, the deformation at the edge of
the contact area is required to calculate the compliance, Eq.

(19) was solved numerically for a wide range of γ at ξ = 1.
The solution was correlated and the following relationship
is proposed:

ωb (aL) =
4P0 aL

πE0
h
4.79− 3.17 (P 00)3.13

i (20)

where 0 < P 00 ≤ 1. The maximum relative difference be-
tween Eq. (20) and the numerical solution is approximately
4.6 percent. In the Hertzian limit, elastic deformations of
the half-space at the center and the edge of the contact area
are:

ωb,H (0) =
a2H
ρ
=

πP0,H aH
2E0

(21)

ωb,H (aH) =
a2H
2ρ

=
πP0,H aH
4E0

(22)

It can be seen that in the Hertzian limit, Eqs. (19) and (20)
yield the Hertzian values, i.e., Eqs (21) and (22), respec-
tively. Figure (9) shows non-dimensional deformations at
the center ω0b (0) and at the edge of the contact area ω

0
b (aL) ;

in addition, the ratio of these deformations is shown in the
plot over a wide range of P 00. As the non-dimensional max-
imum pressure decreases, i.e., the effect of roughness be-
comes more significant, bulk deformations at both the cen-
ter and the edge of the contact decrease. As seen in Fig. (9),
the ratio of deformations, ωb (0) /ωb (aL), increases as the
non-dimensional maximum pressure P 00 decreases. In other
words, the ratio of ωb (0) /ωb (aL) is larger for “rougher”
contacts which is a direct result of the general pressure dis-
tribution profile, i.e., the general pressure falls off faster
than the Hertzian pressure, see Fig. (4).

The mutual approach of distant points in the two solids
is called compliance. Compliance between rough spherical
bodies is a function of asperity deformation ωa (r), the bulk
deformation ωb (r), and the sphere profile and is given by
κ = r2/2ρ+ωa (r)+ωb (r) [20]. Assuming the deformation
of asperities at the edge of the contact area is zero ωa (aL) =
0, the compliance can be found from

κ = a2L/2ρ+ ωb (aL) (23)

Combining Eqs. (18), (20), and (23), one obtains

κ0 =
κ

κH
= 0.5 (a0L)

2
+

8P 00 a
0
L

π2
h
4.79− 3.17 (P 00)3.13

i (24)

where κH = a2H/ρ is the Hertzian compliance. Equation
(24) is plotted in Fig. (12) for a range of P 00.
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COMPARISON WITH EXPERIMENTAL DATA

The results of the present model have been used in a
thermal analysis to predict the thermal contact resistance
(TCR) of spherical rough contacts in a vacuum. The devel-
oped model showed very good agreement with more than
280 experimental data points collected by many researchers
during the last forty years [21]. Additionally, an analytical
model has been developed to predict TCR of spherical rough
surfaces in gaseous environments by the same authors using
the general pressure distribution and very good agreement
was observed with experimental data [22].

To verify the proposed model, the radius of the con-
tact area and the compliance predicted by the model are
compared with experimental data collected by Tsukada and
Anno (TA) [23], Greenwood et al. (GJM) [14], and Kagami
et al. (KYH) [20]. The experimental arrangement contains
a smooth sphere placed in contact with a rough plane. The
contact area was made visible by depositing a thin layer of
copper [14] or an evaporated carbon film and a lamp black
film [20]. The contact radii were measured using a metal-
lurgical microscope. Due to the measurement method, the
experimental data may contain a relatively high uncertainty
particularly at light loads or very rough surfaces since it in-
volved some degree of judgment. Ranges of non-dimensional
parameters α and τ covered by the experimental data are
shown in Fig. 10. The experimental data include contact
between similar (steel-steel) and dissimilar (steel-copper)
materials and cover a relatively wide range of load, rough-
ness, and radius of curvature. The proposed relationship for

α = σ ρ / a2
H

10-3 10-2 10-1 100 101 102

Kagami, Yamada, and Hatazawa (KYH) 1982

Greenwood, Johnson, and Matsubara (GJM) 1984

Tsukada and Anno (TA) 1979

16.8 ≤ τ ≤187.4
ρ = 3.15 mm, 0.082 ≤ σ ≤1.45 µm, 0.19 ≤ F ≤ 88 N
carbon steel spheres − carbon steel and copper flats

31 ≤ τ ≤ 170.8
ρ = 12.7 mm, 0.19 ≤ σ ≤ 2.2 µm, 4.8 ≤ F ≤ 779 N
hard steel balls − hard steel flats

7.8 ≤ τ ≤ 47.6
ρ = 1.5, 5, 10 mm, 0.11 ≤ σ ≤ 2.1 µm, 23.5 ≤ F ≤ 1375 N
SUJ 2 spheres − SK 3 flats

τ = ρ / aH

Figure 10. SUMMARY OF PARAMETER VALUES OF EXPERIMENTAL

DATA

aL, Eq. (18) is compared with the data in Fig. 11 and good
agreement is observed. The present model shows the data
trend over the entire range of the comparison. More than
160 data points, 26 sets, were compared with the present
model in Fig. 11. Specimen materials, roughness, and ra-
dius of curvature for data sets are listed in Fig. 11. The
RMS difference between the proposed expression and the
data is approximately 6.2 percent.

Greenwood et al. [14] compared their data and Kagami
et al. [20] data with the GT model. Their comparison
showed a relatively high discrepancy especially with the
Kagami et al. data. Greenwood et al. attributed the ob-
served discrepancy to the experimental difficulties of mea-
suring the contact radius. They also stated that the Kagami
et al. data did not correlate particularly well with the
roughness parameter α. However, as can be seen in Fig.
11, this discrepancy has not been encountered in this study.
Additionally, our comparison shows that the Kagami et al.
data (except for a few points for very rough surfaces at light
loads) follow the correlation very well.

Kagami et al. [20] also measured the compliance be-
tween a smooth steel sphere and rough steel and copper
plates. They collected more than 40 data points, two steel-
steel and two steel-copper sets. Compliances were measured
under various loads and with different roughness using dif-
ferential transformers [20]. Figure 12 shows the comparison
between the present model, Eq. (24) and the KYH compli-
ance data. The present model shows good agreement with
the RMS difference approximately 7.7 percent.

8 Copyright c° 2004 by ASME
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Tsukada and Anno 1979, specimens: SUJ 2 spheres and SK 3 flats
test TA1 TA2 TA3 TA4 TA5 TA6 TA7 TA8
σ µm 0.11 0.35 0.84 0.11 0.35 0.87 0.12 0.35
ρ mm 1.5 1.5 1.5 5 5 5 10 10

test TA9 TA10 TA11 TA12 TA13 TA14 TA15 TA16
σ µm 0.83 0.24 0.40 2.10 0.19 0.39 0.62 0.32
ρ mm 10 5 5 5 5 5 5 5

Greenwood, Johnson, and Matsubara 1984
test GJM1 GJM2 GJM3 GJM4
σ µm 0.19 0.54 1.7 2.2
specimens: hard steel balls of radius 12.7 mm
and hard steel flats

Kagami, Yamada, and Hatazawa 1982
test KYH1 KYH2 KYH3 KYH4
σ µm 0.457 0.180 1.45 0.457
specimens: steel spheres of radius 3.18 mm
KYH 1&2: carbon steel (0.3% C) flats
KYH 3&4: pure copper (99.9% pure) flats

MODEL

MODEL ± 15%

Figure 11. COMPARISON BETWEEN PRESENT MODEL AND EXPERI-

MENTAL DATA, CONTACT RADIUS

P'0 = P0 / P0,H
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Kagami, Yamada, and Hatazawa 1982
test KYH5 KYH6 KYH7 KYH8
σ (µm) 1.45 0.082 0.457 0.082
specimens: steel spheres of radius 3.18 mm.
KYH 5&6: carbon steel (0.3% C) flats
KYH 7&8: pure copper (99.9% pure) flats

Figure 12. COMPARISON BETWEEN PRESENT MODEL AND EXPERI-

MENTAL DATA, COMPLIANCE

SUMMARY AND CONCLUSION

The mechanical contact of spherical rough surfaces was
studied and a new model was developed. The deformations
of surface asperities were considered to be plastic and the
bulk deformation was assumed to be elastic. A closed set
of governing relationships was derived and solved numer-
ically. The pressure distributions predicted by the model

were plotted for different values of surface roughness and it
was shown that as roughness approaches zero the predicted
pressure distribution approached the Hertzian pressure.

A general pressure distribution was proposed that en-
compasses all spherical rough contacts. The maximum con-
tact pressure was observed to be the key parameter that
specifies the contact pressure distribution. The proposed
general pressure distribution yields the Hertzian pressure
at the limit where roughness was set to zero.

Using dimensional analysis, the number of independent
non-dimensional parameters that describe the maximum
contact pressure was determined to be three: α = σρ/a2H ,
τ = ρ/aH , and E0/Hmic. The effect of the microhardness
parameter E0/Hmic on the maximum contact pressure was
observed to be small and therefore ignored. Using curve-
fitting techniques, simple correlations were developed for
calculating the maximum contact pressure and the radius
of the contact area as functions of α and τ . Elastic defor-
mation produced on the half-space as a result of applying
the general pressure distribution was found. Compact rela-
tionships for the deformation at the center and at the edge
of the contact area were proposed. Additionally, a simple
expression for the compliance of spherical rough contacts
was proposed.

The correlation proposed for the maximum contact
pressure was compared with the GT model and a similar
trend was observed. The compliance and the contact ra-
dius predicted by the model were compared against more
than 200 experimental data points collected by others and
showed good agreement.
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